fypes of Promises in JavaScript

4 ) SUMANTHM
'\ Frontend developer




‘Reacth

. e

e Promises help handle asynchronous operations.
e They make code readable and error-proof.

e Whether fetching data, handling multiple tasks,
or racing for the fastest result—promises are
essential In modern JavaScript development.

SUMANTH M

Frontend developer




‘Reactjs

~ Simple Promise
000

const promise = new Promise((resolve, reject) => {
// Imagine fetching user data
const success = true;

success ? resolve("Data fetched!") : reject("Failed to fetch data");

e

promise
.then(data => console.log(data))
.catch(error => console.error(error));

A promise that either resolves or rejects Often used for
APl calls or async tasks.

‘When to Use: For single operations like APl requests.

Advantage: Clean handling of success ano
fatlure in one block. »



‘React]s

Promise.all:
Multlple Operations

const fetchUser = fetch("/user").then(res => res.json());
const fetchSettings = fetch("/settings").then(res => res.json());

Promise.all([fetchUser, fetchSettings])
.then(([user, settings]) => console.log("Data:", user, settings))
.catch(error => console.error("Error:", error));

‘Waits for all promises to resolve.
If one fails, everything fails.

Best for multiple async tasks that need to succeed together

When to Use: When you need all results to proceed
Disadvantage: One rejection means everything fails.

Advantage: Clean handling of success and

failure in one block. »




const fetchvalid = fetch("/valid").then(res => res.json());
const fetchInvalid = fetch("/invalid").then(res => res.json());

Promise.all(|fetchvalid, fetchInvalid])
.catch(error => console.error("Failed:", error));

Problem: If even one promise fails, the rest are ignored.

Alternative: If you want partial results, use
Promise.allSettled.

SUMANTH M

Frontend developer




‘React]s

W Promise.race:
- Firstto Finish Wins

const fast = new Promise(resolve => setTimeout(resolve, 500, "Fast result"));
const slow = new Promise(resolve => setTimeout(resolve, 106060, "Slow result"));

Promise.race([fast, slow])
.then(result => console.log(result));

Returns the result of the first promise to settle, whether it’s
resolved or rejected.

Useful when you need speed, such as loading the first
available response

When to Use: When speed matters more than waiting for

all tasks.
Limit: You may get an error if the fastest one fails first.

SUMANTH M

Frontend developer




‘Reacth

‘What If A Promise In
. Promlse race Fails?

const error = new Promise((_, reject) => setTimeout(reject, 100, "Error"));
const success = new Promise(resolve => setTimeout(resolve, 500, "Success"));

Promise.race([error, success])
.catch(error => console.error("First rejection:", error));

If the first promlse rejec:ts Promise.race will fail immediately.

-Dlsadvantage Fast rejection stops the race.all tasks.

SUMANTH M

Frontend developer




‘Reacth
~ Promise.any:
~ First Success Wins

const promisel = Promise.reject("Failed 1");

const promise2 = new Promise(resolve => setTimeout(resolve, 500, "Success!"));

Promise.any([promisel, promise2])

.then(result => console.log("First success:", result)) // Logs: "Success!”
.catch(error => console.error("All failed:", error));

'Resolves when any one promise resolves. Ignores rejections.
Useful when you’re okay with one success, even If others fall

When to Use: When you just need one success, regardless
~of fallures. |
Limit: Rejects only if all promises fail.

SUMANTH M

Frontend developer




‘Reacth

~ Promise.allSettled:
- GetAllResults

const promisel = fetch("/apil").then(res => res.json());
const promise2 = fetch("/api2").then(res => res.json());

Promise.allSettled([promisel, promise2])
.then(results => results.forEach(result => {
console.log(result.status === “"fulfilled” ? "Success:" : "Failure:", result);

1);

Waits for all promises to settle, regardless of success or failure.
Great when you need both results and errors

When to Use: When you want to know all results, even failures.
Advantage: Avoids immediate failure, unlike Promise.all.

SUMANTH M

Frontend developer




‘React]s

Recap

* Promise.all: Walit for everything to resolve; one
fallure breaks it.

e Promise.race: Fastest result wins, regardless of
success/failure.

e Promise.any: Returns the first success;
Ignores errors.

e Promise.allSettled: Collects all outcomes, good

or bad.

SUMANTH M

Frontend developer




‘React]s

* Promise.all: Best for tasks that need to all succeed
(e.qg., loading multiple data).

e Promise.race: Best for speed, like loading the first
avallable response.

e Promise.any: Great when you only need one success,

ke trying backup systems.

e Promise.allSettled: Ideal for handling both success

and failure gracefully.

SUMANTH M
Frontend developer




‘React]s

""" - Final Thoughts

.

| Chds:irig the :ri'g'ht ty:pe of promise is key to efficient
~async programming.

- Use the one that best fits your use case: speed,

Let’s discuss!

SUMANTH M

Frontend developer




