
React

Day 6

kodemaven-portfolio.vercel.app

Props

Data Passing



What are Props?
Props are objects that hold the values of attributes

of a component and are used to pass data from a

parent component to a child component. 

kodemaven-portfolio.vercel.app

They are read-only, meaning they cannot be

modified by the child component receiving them.

Props help make components more dynamic and

interactive by allowing them to receive data from

other components and render accordingly.

Parent

Child



Key Characteristics of Props:

kodemaven-portfolio.vercel.app

Immutable: Once passed to a component,

props cannot be modified by that component.

Reusable: Props enable reusability of

components by allowing them to accept

dynamic data inputs.

Unidirectional Flow: Props are passed from

parent to child, maintaining a unidirectional

data flow, which simplifies the application’s

state management.



How to Use Props In React

kodemaven-portfolio.vercel.app

To understand how props work, let's consider an

example where we have a Parent component that

passes data to a Child component.

Step 1: Define the Child Component:
Remember, we learned how to create a component

in the lesson for Day 3. Right-click on your

“components” folder, and select “New file”. Type

in your component name as “ChildComponent.jsx”

and hit the enter button. Then write this codes:



kodemaven-portfolio.vercel.app

In the codes above, the ChildComponent expects

to receive two props: greeting and message. The

props are accessed using props.greeting and

props.message.

Step 2: Pass Props from the Parent Component

Also create the “ParentComponent.jsx” file and

write these codes:

Here, the ParentComponent passes two props,

greeting and message, to the ChildComponent. The

values "Hello, World!" and "Welcome to learning
React props!" are sent down to the child, which then

displays them.



kodemaven-portfolio.vercel.app

Step 3: Render the Parent Component

Finally, the ParentComponent is rendered in the

root component, usually “App.jsx”:



kodemaven-portfolio.vercel.app

To view if this works, go to your terminal on your IDE,

navigate to your project’s folder (the folder you

created for your project), and run your development

server using this command: “npm run dev”.

If you followed these steps accurately, you should

get this in your browser.

Then click on or paste the localHost URL to your

browser.



kodemaven-portfolio.vercel.app

This is called "function parameter destructuring"

and it's a concise way to extract props values.

Destructuring Props
Props can also be destructured directly within the

function signature or inside the function body,

making the code cleaner and easier to read:

Props destructuring is a way to extract props

values from the props object in a React

component. It allows you to access props values

directly, without having to use the props. prefix.

instead of (props)

used directly



Or, inside the function body:

kodemaven-portfolio.vercel.app

In this example, the greeting and message props
are extracted from the props object using
destructuring. This allows you to use the greeting
and message variables directly in the component.



Default Props

kodemaven-portfolio.vercel.app

You can define default values for props in case

they are not provided by the parent component.

This is useful for preventing errors or providing

fallback values:

If the ParentComponent does not pass a greeting
or message prop, the ChildComponent will use the

default values specified in defaultProps.



Different Types of Props in React

kodemaven-portfolio.vercel.app

1. String Props: String props are used to pass text

or characters to a component. Ideal for passing

static text, such as names, labels, or messages.

Here, the name prop is a string "John" passed to

the Greeting component.



Example:

kodemaven-portfolio.vercel.app

The age prop is a number (30) passed to the
AgeDisplay component by wrapping it with curly
braces.

2. Number Props: Number props are used to pass

numeric values, such as integers or floats.

Commonly used for passing quantities, IDs, or any

numeric data.



Example:

kodemaven-portfolio.vercel.app

The isActive prop is a boolean (true), which
determines the displayed text.

3. Boolean Props: Are used to pass true or false

values. Useful for toggling states, conditional

rendering, or setting flags.



Example:

kodemaven-portfolio.vercel.app

The user prop is an object containing name and
age properties, passed to the UserProfile
component.

4. Object Props: Object props are used to pass

complex data structures like JavaScript objects.

Helpful for passing related data items, such as user

profiles, configurations, or settings.



Example:

kodemaven-portfolio.vercel.app

The items prop is an array (["Apple", "Banana",
"Cherry"]), used to dynamically render a list of
items.

5. Array Props: Array props are used to pass lists or

collections of data. Ideal for rendering lists,

looping through items, or passing multiple values.



Example:

kodemaven-portfolio.vercel.app

 The handleClick prop is a function passed to the
Button component to handle the button's click
event.

6. Function Props: Function props are used to pass

functions that can be executed within the child

component.

Used for handling events, callbacks, or sharing

behavior between components.



Prop Types Checking
React provides a way to validate the props passed
to a component using prop-types. 

kodemaven-portfolio.vercel.app

It helps ensure that the component receives the
correct type of data and prevents errors caused
by incorrect prop types.

Check our ChildComponent.jsx, there is an error
specifying that the props “greeting” and “message”
are missing validation. This is because we didn’t
tell React the types of data the props are holding
and how important they are.

For example:



To correct this, we will have to declare the data
types for each prop.

kodemaven-portfolio.vercel.app

First, install the prop-types package from react:
Open your terminal, in your project folder
directory, type “npm install prop-types”. The
library will be installed.

How it works:

Now, let’s use this library in our component by
importing it like this:

And declare our prop types:



Full code:

kodemaven-portfolio.vercel.app

PropTypes.string indicates that greeting and
message variables must be a string while the
.isRequired attached to the variable greeting
means that it must be provided. If greeting is not
provided, a warning will be shown in the console
during development.



The different types of prop validators are:

kodemaven-portfolio.vercel.app

string

number

bool

array

object

func

node

element

symbol

oneOfType (e.g.,

PropTypes.oneOfType([PropTypes.string,

PropTypes.number]))

oneOf (e.g., PropTypes.oneOf(['value1',

'value2']))

shape (e.g., PropTypes.shape({ name:

PropTypes.string, age: PropTypes.number }))



Props Drilling
This can create a situation where components are
"drilled" with props they don't use, just to ensure
the right data reaches the necessary destination.

kodemaven-portfolio.vercel.app

Illustrating Prop Drilling:

Let's look at an example where we have a deeply
nested structure and a piece of data (userName)
needs to be passed from a top-level App
component to a deeply nested UserProfile
component.



kodemaven-portfolio.vercel.app



kodemaven-portfolio.vercel.app

Prop Drilling Issue: In this example, the userName
prop is defined in the top-level App component. It
is passed down through the ParentComponent
and ChildComponent to finally reach the
UserProfile component. 

Unnecessary Prop Passing: This leads to a
situation where components are unnecessarily
aware of props they don't need, making the code
less readable and harder to maintain.

The intermediate components (ParentComponent
and ChildComponent) do not actually use
userName but are forced to pass it down to fulfill
the needs of UserProfile

Props drilling can make large projects to be difficult
to maintain states and props. To avoid this, use the
Context API or state management libraries like Redux
to manage global or shared states and props.



 Best Practices for Using Props

kodemaven-portfolio.vercel.app

1. Use Destructuring: Always destructure props to
make your code more readable and concise.

So, instead of this:

Do this:



2. Use PropTypes to validate the type and
presence of required props to catch potential bugs
during development.

kodemaven-portfolio.vercel.app



3. Keep Props Simple: Only pass the necessary
data to the child components. Avoid passing entire
objects or deeply nested data structures unless
necessary.

kodemaven-portfolio.vercel.app

4. Avoid Passing Too Many Props: If you find
yourself passing too many props to a component,
consider if the component can be broken down
further or if a different approach (like context) is
more appropriate.



kodemaven-portfolio.vercel.app

Using props appropriately ensures a smooth and

efficient data flow in your application, making

components flexible and easy to maintain.

Conclusion

But overusing it can lead to potential bugs and

increased development time.

Leveraging the Context API, state management

libraries, and better component composition

techniques can help avoid unnecessary prop

passing and make your application more scalable,

readable, and easier to manage.



Remember to: 

Like 

Save for future reference

&
 Share with your network, be

helpful to someone 👌

I hope you found this material
useful and helpful.

kodemaven-portfolio.vercel.app



Hi There!  

Thank you for reading through
Did you enjoy this knowledge? 

Follow my LinkedIn page for more work-life
balancing and Coding tips.

💼

🌐 LinkedIn: Oluwakemi Oluwadahunsi

kodemaven-portfolio.vercel.app


