FRONTEND_CHAMPS

BACKEND NOTES




FRONTEND_CHAMPS

1. SERVER-SIDE LANGUAGES

Purpose: Handle the logic, data processing, and

server operations of web applications.

Popular Languages:

e PHP: Easy to learn, widely used for web development with

frameworks like Laravel.

* Node.js: JavaScript runtime for building scalable network

applications.

e Python: Versatile language, popular with frameworks like

Django and Flask.

» Java: Robust, used for enterprise-level applications with

frameworks like Spring.



FRONTEND_CHAMPS

2. DATABASES

Purpose: Store, retrieve, and manage data for web

applications.
Types:

e SQL (Relational): Structured data with relations
(e.g. MySQL, PostgreSQL, SQL Server).

e NoSQL (Non-relational): Flexible schema for

unstructured data (e.g., MongoDB, Cassandra).

CRUD Operations: Create, Read, Update, Delete—

basic database interactions.



FRONTEND_CHAMPS

3. APIS

Purpose: Enable communication between the

server and client or between different services.

Types:

e REST (Representational State Transfer): Uses
HTTP methods (GET, POST, PUT, DELETE) and URLSs.

e GraphQL: A query language for APIs that allows

clients to request specific data.

» SOAP (Simple Object Access Protocol): Protocol
for exchanging structured information in web

services.



FRONTEND_CHAMPS

4. AUTHENTICATION &
AUTHORIZATION

Authentication: Verifies the identity of a user (e.g,,

login systems).

Authorization: Determines user permissions (e.g.,

access control).

Methods:

e Sessions/Cookies: Store session data on the server or

client.

e JWT (JSON Web Tokens): Secure tokens for stateless

authentication.

e OAuth: Protocol for authorization (e.g., social login)



FRONTEND_CHAMPS

5. WEB SERVERS

Purpose: Serve web pages and handle client

requests.
Popular Servers:

e Apache: Open-source, widely used with

support for PHP.

e Nginx: High-performance server, often used as

a reverse proxy.

e Node.js: Built-in server capabilities with the
HTTP module.



FRONTEND_CHAMPS

6. MIDDLEWARE

Purpose: Process requests and responses before

reaching the server or client.
Examples:

e Express.js Middleware: Handles tasks like

logging, authentication, and error handling.

e Middleware in Django: Processes requests and
responses, enabling security and session

management.



FRONTEND_CHAMPS

7. VERSION CONTROL

e Git: Track changes, collaborate on code, and
manage versions (git init, git branch, git

merge).

e Branching: Work on features/bug fixes without

affecting the main codebase



FRONTEND_CHAMPS

8. DEPLOYMENT

Purpose: Make applications available to users.
Tools:

e Containers: Package applications and

dependencies (e.g., Docker).

e CI/CD Pipelines: Automate testing, integration,
and deployment (e.g., Jenkins, GitHub Actions).

e Cloud Services: Host applications on cloud

platforms (e.g., AWS, Azure, Google Cloud).



