
JS 



OptionalChining.js

let name = person?.address?.street?.name;

Optional Chining (?.)1.
Introduced in ECMAScript 2020, optional
chaining allows you to read the value of a
property located deep within a chain of
connected objects without having to check that
each reference in the chain is valid.



Nullish Coalescing.js

let name = person?.name??’Unknown’;

Nullish Coalescing (??)2.
Also introduced in ECMAScript 2020, the nullish
coalescing operator returns the first operand if
it's not null or undefined, and the second
operand otherwise.



Biglnt.js

const x = 12345678901234567890n;

Biglnt3.
A new numeric primitive in JavaScript, BigInt is
used to represent integers with arbitrary
precision, allowing for accurate calculations
with large integers.



globalThis.js

console.log(globalThis === window); 

// true in a browser

globalThis4.
A new global object, globalThis, provides a
way to access the global object in a way
that's compatible with modern JavaScript
environments.



matchAll.js

const regex = /(\w)(\d)/g;

const str = 'a1b2c3';

for (const match of str.matchAll(regex)) {
console.log(match);

}

matchAll()5.
A new method on the String prototype,
matchAll() returns an iterator that yields
matches of a regular expression against a
string, including capturing groups.



Promise.allSettled.js

const promises = [Promise.resolve('a'), Promise.reject('b'),
Promise.resolve('c')]; 
Promise.allSettled(promises).then((results) =>
console.log(results));

Promise.allSettled()6.
A new method on the Promise API,
allSettled() returns a promise that is resolved
when all of the promises in an array are
either resolved or rejected.



String.prototype.at.js

const str = 'hello';

console.log(str.at(0)); // 'h'
console.log(str.at(-1)); // '0'

String.prototype.at()7.
A new method on the String prototype, at()
returns the character at the specified index,
allowing for negative indices to access
characters from the end of the string.



Promise.allSettled.js

try { 
throw new Error("Error occurred", { cause: new Error("Underlying
cause") }); } catch (error) { 
console.log(error.cause); 
}

Error Cause8.
A new property on Error objects, cause allows
you to specify the underlying cause of an
error.


