,572EST API

DESIGN
PATTERNS
FOR
SCALABILITY

@ Introduction

Building scalable and secure REST APIs is
crucial for modern applications. Here are 7
patterns that can help you design better

APIs!

© 1.Rate Limiting

Rate Limiting helps control the numlber of AP
requests a client can make in a given time
frame. This protects your API from abuse and

ensures fair usage.
Use Case: Preventing DoS (Denial of Service) attacks and

managing traffic spikes.
Code Snippet: Using express-rate-limit in Node.js

const rateLimit = require('express-rate-limit');
const limiter = rateLimit({

windowMs: 15 * 60 * 1000,

max: 100
})s

app.use(limiter);

Request Throttling Process
©)

| Start Request |

Eﬁfﬁhﬁ

Process Apply
Fequest Throttling ‘

ol ol

Send Throttle
Response

sl @

— —
J"l '

| End Process !'

Tools: Kong, Express middleware

© 2.Circuit Breakers

Circuit Breakers prevent your system from
making repeated calls to a failing service,
Improving resilience and reducing latency.

Use Case: Handling unreliable services or network issues
gracefully

Code Snippet: Using opossum library in Node.js

const CircuitBreaker = require('opossum');

const breaker = new CircuitBreaker(yourFunction, {
timeout: 3000,// It our function takes longer than 3 seconds, trigger a failure
errorThresholdPercentage: 50,
resetTimeout: 30000 // 30 seconds
})s
breaker.fire()
.then(response => console.log(response))
.catch(err => console.error(err));

TIP _ :Implement circuit breakers to avoid cascading
failures in microservices architectures

Tools: You can use these tools for Circuit Breaker.
Opossum, Hystrix

© 3.APIGateway

An APl Gateway acts as a single entry point,
handling requests and routing them to
appropriate microservices. It can also manage
authentication, rate limiting, and logging.

Use Case: Essential in microservices architecture to
manage service communication.

Code Snippet:
00

apiVersion: networking.k8s.io/v1l
kind: Ingress
metadata:
name: api-gateway
spec:
rules:
- host: example.com
http:
paths:
- path: /servicel
backend:
serviceName: servicel
servicePort: 80
- path: /service2
backend:
serviceName: service2
servicePort: 80

1
2
5
6
7
g

0

TIP _ :Use APl Gateways to simplify and centralize
authentication for multiple services.

Tools: You can use these tools for APl Gateway.
Kong, AWS API Gateway

© 4.versioning

APl Versioning helps you manage changes and
updates without breaking existing clients.
Common methods include URI versioning, query
parameters, and custom headers.

Use Case: Managing backward compatibility when
updating APIs

Code Snippet: Versioning with Express

const express = require('express');
const app = express();

// Example 1
app.use('/api/vl’', vlRoutes);
app.use('/api/v2"', v2Routes);

// Example 2
app.get('/api/vl/resource’', (req, res) => {
res.send('This is version 1 of the resource');

D;

app.get('/api/v2/resource’, (req, res) => {
res.send('This is version 2 of the resource');

};

TIP _ :Always communicate deprecation timelines clearly
when sunsetting old API versions.

Tools: You can use these tools for Versioning.
Express middleware

© 5.Caching

Caching can significantly reduce the load on
your server by storing frequently accessed data
closer to the user.

Use Case: Improving response times for read-heavy APIs.

Code Snippet: Caching in Node.js with Redis

const redis = require('redis’);

const client = redis.createClient();

app.get('/data’', (req, res) => {
client.get('key', (err, data) => {

if (data) return res.send(data);

s
s

TIP _ :Leverage caching for static and infrequently
updated data to reduce database load

Tools: You can use these tools for Caching. Redis

©® 6.Authentication &
Authorization

Securing APIs with OAuth2, JWTs, or API keys
ensures that only authorized users access your
services

Use Case: Protecting sensitive data and preventing
unauthorized access.

Code Snippet: Using JWT with Express

import jwt from "jsonwebtoken”;

const generateToken =(id)=>{
return jwt.sign({id } , process.env.JWT SECRET , {
expiresIn:“30d"

})

}

export default generateToken

TIP _ :Use short-lived JWT tokens and refresh tokens to
enhance security

Tools: You can use these tools for Auth. JWT , oAuth

© 7.Pagination

Pagination helps break down large sets of data
iInto manageable chunks, improving API
performance and user experience

Use Case: When returning lists of data like user records,
sedrch results, etc

Code Snippet:Pagination with MongoDB

app.get('/users', async (req, res) => {
const page = req.query.page || 1;
const 1limit = req.query.limit || 10;
const users await User.find()

.skip((page - 1) * limit)
Aimit(limit);
res.json(users);

});

TIP _ :Provide total records count along with paginated
data for a better client experience.

Tools: You can use these tools for Pagination.
Express middleware

© cCallto Action

e Implementing these patterns can take your REST
API's scalability and security to the next level. Start
with one and see the difference!

e Comment below with your favorite pattern or the

one you find most challenging!

Resources & Tools

Tools to help you implement these patterns: Kong,
Express Middleware, Redis, JWT, AWS APl Gateway

;Opossum and Hystrix libraries.

ALl AHMAD
@aliahmadi4

