
DesignGurus.io

Design Patterns 
Used at Different 
Software Layers

Load Balancer
 Layer

API Gateway
Layer

Application
Server Layer



Client 
Layer

Client-side Load Balancing: Distributes
requests from the client directly to the available
service instances.

State Pattern: Allows an object to alter its
behavior when its internal state changes.

Composite UI Pattern: Composes responses
from multiple microservices 
to render the complete UI.

DesignGurus.io



Load Balancer
 Layer

Geographical Distribution: Routes traffic based
on the geographical location of the client.

Health Checks: Periodically checks the health of
the servers and routes traffic only to healthy
ones.

Affinity Based Routing: Routes the user's
request to the same server for maintaining
session persistence.

Least Connections: Routes traffic to the server
with the fewest active connections.



API Gateway
Layer

Backend for Frontend (BFF): Tailors API
responses to the needs of individual client types.

Circuit Breaker: Detects failures and prevents
applications from trying to perform actions that
are doomed to fail.

Retry Pattern: Helps to handle transient failures
when it tries to connect to a remote service or
network resource.

Request Collapsing: Collapses multiple requests
for the same operation into a single request.



Page Cache Pattern: Stores the output of
expensive operations and reuse it to avoid
duplicated work.

Compression Pattern: Reduces the size of the
response to improve load times.

Lazy Loading: Defers initialization of an object
until the point at which it is needed.

Content Negotiation Pattern: The server
generates different versions of a resource and
serves the one matching the client’s criteria.

Web Server
Layer



Saga Pattern: Manages long-running
transactions and deals with failures and
compensating transactions.

CQRS (Command Query Responsibility
Segregation): Separates read and write
operations to improve performance and
scalability.

Proxy Pattern: Provides a surrogate or
placeholder for another object to control access
to it.

Chain of Responsibility: Passes the request
along a chain of handlers.

Application
Server Layer



Sidecar Caching: Deploy a dedicated cache
alongside each microservice to provide isolated
and scalable caching functionality.

Cache Chaining: Arrange multiple cache layers
hierarchically to handle different granularity or
lifetime, querying each layer sequentially on a
cache miss.

Time-to-Live (TTL) Caching: Assigns a
predefined lifespan to each cache entry,
removing or refreshing the entry once its
lifespan expires.

Caching Layer



Prefetching: Anticipates user actions and loads
resources ahead of time.

Parallel Requesting: Makes multiple requests in
parallel to improve load times.

Edge Computing: Processes data closer to the
location where it is needed.

Domain Sharding: Splits resources across
multiple domains to increase parallel downloads.

Adaptive Image Delivery: Delivers images
tailored to the device and user context.

CDN Layer



Sharding Pattern: Distributes data across
multiple databases to improve scalability.

Replication Pattern: Keeps copies of data in
multiple locations for availability and reliability.

Read-Replica Pattern: Uses read replicas to
offload read operations from the primary
database instance.

Query Object Pattern: An object that represents
a database query.

Database
Layer

DesignGurus.io



Learn about the 
Microservices Design Patterns

in Grokking Microservices
Design Patterns from 

DesignGurus.io

DesignGurus.io


