'

Asynchronous
programming

in JavaScript

24 g
& .

2

codewithsloba.com - Swipe —

2/6

Asynchronous programming is a
way to handle tasks that do not
need to be executed in a
sequential order.

This can be useful for tasks that take a long
time to complete, such as making an API
request or loading an image.

There are three main ways /

Swipe —

3/6

Callbacks

Callbacks are functions that are passed as
arguments to other functions. They are
called when the other function finishes
executing.

function getFibonacciNumber(callback) {
// Do something asynchronous here
setTimeout(() => {

callback(); _ ¢:u*ed
}, 1000); ’ This code Wi be exe Fi
: ofAer the asynerire
n Finishes
getFibonacciNumber(function() { (DPervﬁKJ

console.log('The result of the FA\H_H
asynchronous operation');

});

"The result of the asynchronous operation”

{5_ Swipe —

4/6

Promises

Promises are objects that represent the
eventual result of an asynchronous
operation. They can be used to chain
together asynchronous operations.

const getFibonacciNumberPromise = new
Promise((resolve, reject) => {

// Do something asynchronous here

setTimeout(() => {

resolve('The result of the asynchronous

operation');

}, 1000);
});

getFibonacciNumberPromise.then(result => {
console. log(result);

}); "\
Crer the

uted o g

§. Swipe —

5/6

Async/await

Async/await is a newer feature of
JavaScript that makes it easier to write
asynchronous code. It allows you to write
code that looks like synchronous code, but
it actually executes asynchronously.

async function getFibonacciNumber() {
// Do something asynchronous here
const result = await setTimeout(() => {
return 'The result of the asynchronous operation’;

}, 1000);
console.log(result); &~
i exec.ui‘ed ofter the
nous
getFibonacciNumber(); angMﬁﬂro

: inishes
oPerahon b

Swipe —

Did You Find it
?

Alamin CodePapa
@CodePapa360

Follow for more

Like | Comment | Repost

» o)

