
Dependency
Injection

5 Mistakes You Should
Never Make

by Sanuja Tharinda

Quick Recap

Swipe to next slide

Dependency Injection (DI) is
the process of passing objects
or services (dependencies) into
a class, instead of letting the
class create them internally.

Key Benefits of DI are,
Loosely Coupled Code
Easier Unit Testing
Better Maintainability

But many developers run into
issues when using it. Let’s
explore some common
problems and how to fix them!

by Sanuja Tharinda

 Solution

Refactor the design to avoid
circular dependencies.

Use Lazy<T> to delay object
creation

Use a factory pattern to create
objects when needed.

Circular Dependancies

Swipe to next slide

A circular dependency
happens when two or more
services depend on each other,
creating an infinite loop.

by Sanuja Tharinda

Too Many Dependencies in a
Single Class

When a class has too many injected
dependencies, it usually indicates
that the class is doing too much
(violating Single Responsibility
Principle).

Swipe to next slide

by Sanuja Tharinda

Too Many Dependencies in a
Single Class

This makes unit testing hard and
increases coupling between services.

 Solution

Refactor the class by breaking it into
smaller services.

Use Facade or Mediator patterns to
group related dependencies.

Swipe to next slide

by Sanuja Tharinda

Lifetime Mismatches in DI

Swipe to next slide

In ASP.NET Core, dependencies have
different lifetimes:

Transient – Created every time it’s
requested.

Scoped – Created once per request.

Singleton – Created once for the
entire application.

Incorrect mismatches in DI can lead to
issues or errors.

Example:

Injecting a scoped service into a
singleton can cause unexpected
behavior.

Scoped Service cannot be resolved
inside a Singleton.

by Sanuja Tharinda

 Solution

Instead of injecting ScopedService
directly, inject IServiceProvider and
resolve it manually

Lifetime Mismatches in DI

Swipe to next slide

by Sanuja Tharinda

Alternatively, refactor your
dependencies to avoid lifetime
mismatches.

 Overusing Singleton Services

Swipe to next slide

While Singletons are useful, overusing
them can cause performance issues
and state-related bugs.

If a singleton service holds state, it can
cause unexpected behavior across
multiple requests.

by Sanuja Tharinda

 Solution

If you must use a singleton, make it
stateless or use a ConcurrentDictionary
to manage state safely.

Injecting Concrete Classes
Instead of Interfaces

DI is meant to promote loose coupling,
but sometimes developers inject
concrete classes instead of interfaces.

 Solution

Always inject interfaces instead of
concrete classes.

This makes it easier to mock
dependencies for unit testing and follow
Dependency Inversion Principle.

Swipe to next slide

by Sanuja Tharinda

What’s your
biggest
challenge
with DI?

by Sanuja Tharinda Let’s Connected
Software Engineer

