\\\N\\\\

Dependency
Injection

5 Mistakes You Should
Never Make

by Sanuja Tharinda

\\\\\\\\\\



by Sanuja Tharinda

Quick Recap

e Dependency Injection (DI) is
the process of passing objects
or services (dependencies) into
a class, instead of letting the
class create them internally.

e Key Benefits of DI are,
o Loosely Coupled Code
o Easier Unit Testing
o Better Maintainability

e But many developers run into
iIssues when using it. Let’s
explore some common
problems and how to fix them!

Swipe to next slide




by Sanuja Tharinda

Circular Dependancies

e A circular dependency
happens when two or more
services depend on each other,
creating an infinite loop.

public class A { public A(B b)

{
public class B { public B(A a) {

e (/) Solution

o Refactor the design to avoid
circular dependencies.

o Use Lazy«<T> to delay object
creation

o Use a factory pattern to create
objects when needed.

Swipe to next slide




by Sanuja Tharinda

Too Many Dependenciesina
Single Class

e When a class has too many injected
dependencies, it usually indicates
that the class is doing too much
(violating Single Responsibility
Principle?.

public class OrderService

{

public OrderService(
PaymentService payment,
ShippingService shipping,
Logger logger,
EmailService emall,
DiscountCalculator discount)

Swipe to next slide >



by Sanuja Tharinda

Too Many Dependenciesina
Single Class

e This makes unit testing hard and
Increases coupling between services.

e (/) Solution

o Refactor the class by breaking it into
smaller services.

o Use Facade or Mediator patterns to
group related dependencies.

public class OrderFacade

{

private readonly PaymentService _payment;
private readonly ShippingService _shipping;
public OrderFacade(

PaymentService payment,
ShippingService shipping)
{
_payment = payment;
_shipping = shipping;
}
}

Swipe to next slide >



by Sanuja Tharinda

Lifetime Mismatches in DI

e In ASP.NET Core, dependencies have
different lifetimes:

o Transient — Created every time it's
requested.

o Scoped — Credted once per request.

o Singleton — Created once for the
entire application.

e Incorrect mismatches in DI can lead to
issues or errors.

* Example:
o Injecting a scoped service into a
singleton can cause unexpected

behavior.

o Scoped Service cannot be resolved
iInside a Singleton.

Swipe to next slide



by Sanuja Tharinda

Lifetime Mismatches in DI

e (/) Solution

o Instead of injecting ScopedService
directly, inject IServiceProvider and
resolve it manually

public class SingletonService

{

private readonly IServiceProvider _serviceProvider;
public SingletonService(IServiceProvider serviceProvider)

{

_serviceProvider = serviceProvider;

}
public void DoSomething()

{

var scopedService = _serviceProvider.GetRequiredService<ScopedService>();

}
}

o Alternatively, refactor your
dependencies to avoid lifetime
mismatches.

Swipe to next slide



by Sanuja Tharinda

Overusing Singleton Services

e While Singletons are useful, overusing
them can cause performance issues
and state-related bugs.

e |f a singleton service holds state, it can
cause unexpected behavior across
multiple requests.

e /) Solution

o If you must use a singleton, make it
stateless or use a ConcurrentDictionary
to manage state safely.

Swipe to next slide >



by Sanuja Tharinda

Injecting Concrete Classes
Instead of Interfaces

e Dl is meant to promote loose coupling,
but sometimes developers inject
concrete classes instead of interfaces.

services.AddTransient<PaymentService>();

e (/) Solution

o Always inject interfaces instead of
concrete classes.

o This makes it easier to mock
dependencies for unit testing and follow
Dependency Inversion Principle.

Swipe to next slide >



What's your
biggest
challenge
with DI?

(oo

by Sanuja Tharinda

Software Engineer




